

NOAA Technical Memorandum NMFS

AUGUST 2018

REPORT ON THE SWFSC'S COLLECTION OF DATA DURING THE 2015 JOINT U.S.-CANADA INTEGRATED ACOUSTIC AND TRAWL SURVEY OF PACIFIC HAKE AND COASTAL PELAGIC SPECIES (SaKe 2015; 1507SH) WITHIN THE CALIFORNIA CURRENT ECOSYSTEM, 15 JUNE TO 10 SEPTEMBER 2015, CONDUCTED ABOARD FISHERIES SURVEY VESSEL BELL M. SHIMADA

Kevin L. Stierhoff, Juan P. Zwolinski, Josiah S. Renfree, Scott A. Mau, David W. Murfin, and David A. Demer

> Fisheries Resources Division Southwest Fisheries Science Center NOAA National Marine Fisheries Service 8901 La Jolla Shores Dr. La Jolla, CA 92037, USA

NOAA-TM-NMFS-SWFSC-603

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southwest Fisheries Science Center

About the NOAA Technical Memorandum series

The National Oceanic and Atmospheric Administration (NOAA), organized in 1970, has evolved into an agency which establishes national policies and manages and conserves our oceanic, coastal, and atmospheric resources. An organizational element within NOAA, the Office of Fisheries is responsible for fisheries policy and the direction of the National Marine Fisheries Service (NMFS).

In addition to its formal publications, the NMFS uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series, however, reflect sound professional work and may be referenced in the formal scientific and technical literature.

SWFSC Technical Memorandums are available online at the following websites:

SWFSC: https://swfsc.noaa.gov

NOAA Repository: https://repository.library.noaa.gov/

NTIS National Technical Reports Library: https://ntrl.ntis.gov/NTRL/

Accessibility information

NOAA Fisheries Southwest Fisheries Science Center (SWFSC) is committed to making our publications and supporting electronic documents accessible to individuals of all abilities. The complexity of some of SWFSC's publications, information, data, and products may make access difficult for some. If you encounter material in this document that you cannot access or use, please contact us so that we may assist you. Phone: 858-546-7000

Recommended citation

Stierhoff, Kevin L., Juan P. Zwolinski, Josiah S. Renfree, Scott A. Mau, David W. Murfin, and David A. Demer. 2018. Report on the SWFSC's collection of data during the 2015 Joint U.S.-Canada Integrated Acoustic and Trawl Survey of Pacific Hake and Coastal Pelagic Species (SaKe 2015; 1507SH) within the California Current Ecosystem, 15 June to 10 September 2015, conducted aboard Fisheries Survey Vessel *Bell M. Shimada*. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-603. 33 p. https://doi.org/10.25923/vnxd-a710

I. Introduction

The 2015 Joint U.S.-Canada Integrated Acoustic and Trawl Survey of Pacific Hake and Coastal Pelagic Species (SaKe 2015; 1507SH) was conducted aboard NOAA Fisheries Survey Vessel (FSV) *Bell M. Shimada* (hereafter, *Shimada*), 15 June to 10 September 2015. The Acoustic-Trawl Method (ATM) was used to assess coastal pelagic fish species (CPS) and krill within the California Current Ecosystem (CCE). Data were collected using multi-frequency echosounders, surface trawls, vertically and obliquely integrating net tows, a continuous underway fish-egg sampler (CUFES), and conductivity-temperature-depth probes (CTDs).

The SWFSC's objectives for the survey were to: 1) acoustically map the distributions and estimate the abundances of CPS, i.e., Pacific sardine (*Sardinops sagax*), Northern anchovy (*Engraulis mordax*), Pacific herring (*Clupea pallasii*), Pacific mackerel (*Scomber japonicus*), and jack mackerel (*Trachurus symmetricus*); and krill (euphausiid spp.); 2) characterize their biotic and abiotic environments, and investigate linkages; and 3) gather information regarding their life history parameters. Reported elsewhere, the Northwest Fisheries Science Center (NWFSC) concurrently surveyed hake (*Merluccius productus*). The survey domain encompassed the anticipated distributions of the northern sub-population of sardine and the central and northern sub-populations of anchovy off the west coasts of the U.S. and Canada from approximately San Diego, CA to Haida Gwaii, British Columbia. The survey domain was defined by the modeled distribution of sardine potential habitat (Zwolinski *et al.*, 2011), and information recently gathered from other research projects (e.g., California Cooperative Fisheries Investigations (CalCOFI) samples) or the fishing industry (e.g., sardine bycatch).

This report provides an overview of the survey objectives and a summary of the survey equipment, acousticsystem calibration, sampling and analysis methods, and preliminary results. The biomass of the northern stock of Pacific sardine is presented in Zwolinski et al. (2016). This report does not include estimates of the distributions and biomasses for other CPS, krill, or hake.

I.1 Scientific Personnel

As elaborated below, the collection and analysis of the survey data was conducted by the SWFSC¹, and NWFSC². Superscripts denote affiliations and roles of the other cruise participants: 1-SWFSC, 2-NWFSC, 3-Chief Scientist, 4-Field Party Chief, and 5-Lead Biologist.

Project Leads:

- D. Demer¹
- L. Hufnagle²

Acoustic Data Collection and Processing:

- Leg I: J. Clemons^{2,4}, S. Parker-Stetter², J. Pohl², J. Renfree¹, and J. Zwolinski^{1,3}
- Leg II: J. Clemons^{2,3}, S. Mau¹, and R. Thomas²
 Leg III: D. Chu², S. de Blois^{2,3,4}, V. Maynez¹, D. Murfin¹, and S. Parker-Stetter²
- Leg IV: J. Pohl^{2,3}, J. Renfree¹, and R. Thomas²

Trawl Sampling:

- Leg I: C. Colway², J. Evanilla¹, E. Gardner¹, B. Macewicz¹, S. Manion^{1,3}, K. Miller¹, T. Mitchell², A. Odell², H. Villalobos¹, C. Whiteside^{2,5}, and P. Y Chen¹
- Leg II: A.L. Ahern², S. Manion^{1,3}, S. Deery-Schmitt², K. Gilmore¹, D. Griffith¹, M. Seibert¹, M. Ushido², W. Watson¹, and B. Whiteside^{2,5}
- Leg III: S. Deery-Schmitt², A. Hays¹, D. Kamikawa^{2,5}, A. Kester², B. Macewicz¹, C. Purdy¹, M. Sedarat¹, A. Thompson¹, and E. Weber¹
- Leg IV: A. Billings^{2,5}, E. Brasseur², K. Byers¹, S. Charter¹, S. Deery-Schmitt², B. Flores¹, D. Griffith^{1,3}, and A. Lowe¹

Echosounder Calibration:

• D. Demer¹, J. Pohl², J. Renfree¹, J. Zwolinski¹

II. Methods

II.1. Survey region and design

During spring, sardine typically aggregate offshore of central and southern California to spawn (Demer *et al.*, 2012, and references therein). During summer, if the stock is large enough, adults will migrate north, compress along the coast, and feed in the upwelled regions (**Figure II.1**).

Figure II.1. Conceptual map showing the average spring and summer distributions of the northern subpopulation of Pacific sardine potential habitat during spring and summer along the west coasts of Mexico, the United States, and Canada (Zwolinski *et al.*, 2014).

During summer 2015, the west coast of the United States was surveyed using *Shimada*. Compulsory transects were nearly perpendicular to the coast with separations of 10 to 20 nmi. The survey began off San Diego, CA and progressed northwards toward Haida Gwaii, British Columbia, first sampling the central sub-population of anchovy off southern and central California.

The planned transects (**Figure II.2**) spanned the latitudinal extent of the potential habitat of the northern sub-population of sardine at the time of the survey (**Figure II.3**; http://swfscdata.nmfs.noaa.gov/AST/ sardineHabitat/habitat.asp). Transect positions, lengths, and spaces were adjusted according to the expected distributions of sardine and anchovy at the time of the survey.

Figure II.2. Planned compulsory transect lines.

Figure II.3. Distribution of potential habitat for the northern stock of Pacific sardine on 15 June 2015 at the beginning of SaKe 2015.

II.2 Acoustic sampling

II.2.1. Echosounders

Multi-frequency (18, 38, 70, 120, and 200 kHz) General Purpose Transceivers (Simrad EK60 GPTs) and Wideband Transceivers (Simrad EK80 WBTs; 70 and 200 kHz only) were configured with split-beam transducers (Simrad ES18-11, ES38B, ES70-7C, ES120-7C, and ES200-7C, respectively). The transducers were mounted on the bottom of a retractable keel or "centerboard" (Figure II.4). The keel was retracted (transducers ~5-m depth) during calibration, and extended to the intermediate position (transducers ~7-m depth) during the survey. Exceptions were made during shallow water operations, when the keel was retracted; or during times of heavy weather, when the keel was extended (transducers ~9-m depth) to provide extra stability and reduce the effect of weather-generated noise (Appendix A).

Figure II.4. Transducer locations on the bottom of the centerboard aboard *Shimada*.

II.2.2. Calibration

Prior to calibration (15 June 2015 at ~1900), the integrity of each transducer was verified through impedance measurements of each transducer using an LCR meter (Agilent Model E4980A) and custom Matlab software. For each transducer, impedance magnitude (|Z|), phase (θ), conductance (G), susceptance (B), resistance (R), and reactance (X) was measured at the operational frequencies with the transducer quadrants placed in parallel. The echosounders were calibrated using the standard sphere technique (Demer *et al.*, 2015; Foote *et al.*, 1987). The reference target was a 38.1-mm diameter sphere made from tungsten carbide (WC) with 6% cobalt binder material (NWFSC sphere; sphere number unknown). The GPTs were configured, via the ER60 software, using the parameters in **Table III.1** (below).

II.2.3. Data collection

The ER60-computer clock was set to Universal Coordinated Time (UTC) and synchronized with the GPS clock using SymmTime (Symmetricon, Inc.) every six hours. Echosounder pulses were transmitted simultaneously at all frequencies, at variable intervals, as controlled by the ER60 Adaptive Logger (EAL, Renfree and Demer, 2016). The EAL optimizes the pulse interval, based on the seabed depth, while minimizing aliased seabed echoes. Acoustic sampling for CPS-density estimation along the pre-determined transects (see Section II.1) was limited to daylight hours (approximately between sunrise and sunset).

Measurements of volume backscattering strength $(S_v; dB \text{ re 1 m}^2 \text{ m}^{-3})$ and target strength $(TS; dB \text{ re 1} \text{ m}^2)$, indexed by time and geographic positions provided by GPS receivers, were logged to 700-m range, and stored in Simrad .raw format (50-MB maximum file size; each filename begins with "1507SH_" and ends with the logging commencement date and time) using the GPT-control software (Simrad ER60 V2.4.3).

To minimize acoustic interference, transmit pulses were triggered using the EAL and TriggerJigger (Alaska Fisheries Science Center). All other instruments that produce sound within the echosounder bandwidths were secured during survey operations. Exceptions were made during stations (e.g., plankton sampling and fish trawling) or in shallow water when the vessel's command occasionally operated the bridge's 50- and 200-kHz echosounders (Furuno), the Doppler velocity log (Sperry Marine Model SRD-500A), or both.

II.2.4. Data processing

The calibrated echosounder data were processed on a dedicated computer, using commercial software (Echoview V6.1.40.26321, Echoview Software Pty Ltd.) and the following procedure:

- 1. For each transect, the associated data files (.raw format) were loaded into an Echoview (.ev) file. Transducer depths were set to 0 m.
- 2. In each .ev file, values for the environment were set using Echoview calibration supplement (.ecs) files, including data from the closest CTD or UCTD cast. Since the CPS of interest reside in the upper mixed layer, environment data were averaged over 0- to 70-m depth.
- 3. For each frequency:
 - Echograms of $S_{\rm v}$ were displayed.
 - "Noise-reduced" echograms (Figure II.5a), generated by subtracting in the linear domain simulated background noise from the raw S_v , were smoothed by computing the median value in non-overlapping 11-sample by 3-ping cells (Figure II.5b).
 - The smoothed, noise-reduced echograms were used to calculate S_v -differences using the 38-kHz $S_v (S_{v38kHz})$ as a reference (i.e., $S_{v70kHz} S_{v38kHz}$; $S_{v120kHz} S_{v38kHz}$; $S_{v200kHz} S_{v38kHz}$).
 - A CPS mask (Figure II.5c) was created for regions where S_v-differences were within the expected ranges for CPS (Table II.1.).
 - Data were provisionally ascribed to CPS if their S_{v} -differences (i.e., $S_{v70kHz} S_{v38kHz}$; $S_{v120kHz} S_{v38kHz}$; $S_{v200kHz} S_{v38kHz}$) were within predicted ranges (**Table II.1.**).
 - Data collected when the ship approached or departed a sampling station, typically associated with a ship-speed less than 4 kn, were automatically marked as "bad data."
 - Provisional CPS regions created above were ascribed to CPS schools if the standard deviation of each 11-sample by 3-ping cell was > -50 dB at 120 and 200 kHz.
 - The 38-kHz CPS data with $S_v < -60$ dB (corresponding to a density of approximately three fish per 100 m³ in the case of 20-cm-long sardine) were set to -999 dB (effectively zero; **Figure II.5d**).
 - An integration-start line was created at a range of 5 m from the transducers. When necessary, this line was manually modified to exclude reverberation due to bubbles.
 - The depth of the top of the dead-zone was estimated using the variance-to-mean ratio (Demer *et al.*, 2009).
 - An integration-stop line was created at 250-m depth or, when shallower, 3 m above the estimated depth of the top of the dead-zone.
 - Between the integration lines, to a maximum of 250 m, volume backscattering coefficients (s_v , m² m⁻³) were integrated over 5-m depths and averaged over 100-m distances. The resulting integrated volume backscattering coefficients (s_A ; m² nmi⁻²), for each transect and frequency, were output to comma-delimited text (.csv) files.
 - The s_A values were summed over ranges from the integration start line to the approximate depth of the bottom of the upper mixed layer.
 - Data collected during daytime (i.e., not earlier than 30 min before sunrise to not later than 30 min after sunset) were averaged over 2-km distances, and mapped. Nighttime data, assumed to be negatively biased due to diel-vertical migration (DVM) and disaggregation of the target species' schools (Cutter and Demer, 2008; Demer and Hewitt, 1995) were omitted.

Figure II.5 Synchronized echograms of 38-kHz S_v after a) noise-subtraction, b) median smoothing, c) masking, and d) 38-kHz S_v thresholding at -60 dB (final, CPS-only).

Table II.1. S_v-differences (minimum, maximum; dB) for putative CPS.

$S_{\rm v70kHz} - S_{\rm v38kHz}$	$S_{\rm v120kHz} - S_{\rm v38kHz}$	$S_{\rm v200kHz} - S_{\rm v38kHz}$
-12.85, 9.89	-13.15, 9.37	-13.51, 12.53

II.3. Trawl sampling

During the day, CPS form schools in the upper mixed layer (to 70-m depth in the spring; Kim *et al.*, 2005), and much shallower in summer. After sunset, CPS schools tend to ascend and disperse. At that time, with reduced visibility and no schooling behavior, they are less able to avoid a net (Mais, 1974). Therefore, trawl sampling for identifying the species composition and length distributions of acoustic targets was performed at night.

The net, a Nordic 264 rope trawl (NET Systems; Bainbridge Island, WA), has a rectangular opening in the fishing portion of the net with an area of approximately 300 m² (~15-m tall x 20-m wide), variable-sized mesh in the throat, an 8-mm square-mesh cod end liner (to retain a large range of animal sizes), and a "marine mammal excluder device" to prevent the capture of large animals, such as dolphins, turtles, or sharks (Dotson *et al.*, 2010). The trawl doors are foam-filled and the trawl headrope is lined with floats so the trawl tows at the surface.

Nighttime trawl sampling was conducted where echoes from CPS schools were observed earlier that day. Trawls were towed at ~ 4 kn for 45 min. The total catch from each trawl was weighed and sorted by species or groups. From the catches with CPS, up to 75 fish were selected randomly for each of the target species. Those were weighed (g) and measured to either their standard length (L_s ; mm) for sardine, anchovy, and herring, or fork length (L_f ; mm) for jack mackerel and Pacific mackerel. In addition, otoliths were removed, sex and maturity recorded, and fin clips preserved in ethanol from up to 50 of the randomly selected individuals of each species. Regional species composition was estimated from the nearest trawl cluster, i.e., the combined catches of up to three trawls per night, separated by ~ 10 nmi.

II.4. Ichthyoplankton and oceanographic sampling

II.4.1. Egg and larva sampling

During the day, fish eggs were collected using CUFES (Checkley *et al.*, 1997), which collects water and plankton at a rate of ~640 l min⁻¹ from an intake on the hull of the ship at ~ 3-m depth. The particles in the sampled water were sieved by a 505 μ m mesh. Sardine, anchovy, jack mackerel, and hake eggs are identified to species, counted, and logged. Typically, the duration of each CUFES sample was 30 min, corresponding to a distance of 5 nmi at a speed of 10 kn. Because the duration of the initial stages of the egg phase is short for most fish species, the egg distributions inferred from CUFES indicate the nearby presence of actively spawning fish.

A CalCOFI bongo oblique (or bongo) net (a paired, bridleless, 71-cm diameter net with 505- μ m mesh; Smith and Richardson, 1977) was used to sample ichthyoplankton and krill at one station each day soon after sunset. Where there was adequate depth, 300 m of wire was deployed at a rate of 50 m min⁻¹ and then retrieved at 20 m min⁻¹, at a nominal wire angle of 45°. Bongo samples were stored in 5% formalin. Paired vertical egg tow (PairoVET; Smith *et al.*, 1985) nets (25-cm diameter; 150- μ m mesh) were used to sample fish eggs and larvae from a depth of 70 m to the sea surface at a rate of 70 m min⁻¹ at the same locations where bongo nets were deployed. These PairoVET samples were preserved in 95% ethanol for future genetic analysis.

II.4.2. Conductivity and temperature versus depth (CTD) sampling

Day and night, conductivity and temperature versus depth to 350 m were measured with calibrated sensors on a CTD rosette or underway probe (UCTD) cast from the vessel. These data were used to estimate the time-averaged sound speed (Demer, 2004), for estimating ranges to the sound scatterers, and frequencyspecific sound absorption coefficients, for compensating signal attenuation of the sound pulse between the transducer and scatters (Simmonds and MacLennan, 2005). These data also provided indication of the depth of the upper-mixed layer, where most epipelagic CPS reside during the day.

III. Results

III.1. EK60 echosounder calibration

The EK60s were calibrated on 19 June 2015 (~2300 GMT) while the vessel was at anchor near Shelter Island, San Diego Bay (32.7135 °N, -117.2227 °W, **Figure III.1**). Thermosalinograph (Seabird Model SBE38) measurements of sea-surface temperature ($t_w = 19.68$ °C) and salinity ($s_w = 33.57$ psu) were input to the GPT-control software, which derived estimates of sound speed ($c_w = 1519$ m s⁻¹) and absorption coefficients (see **Table III.1**). Varying with tide, the seabed was approximately 8 to 12 m beneath the transducers. The calibration sphere was positioned 4.5 to 7 m below the transducers.

GPT information, configuration settings, and beam model results following calibration are presented in **Table III.1**. Measurements of beam-uncompensated sphere target strength $(TS_{u}, dB \text{ re } 1 \text{ m}^2)$ are plotted in **Figure III.2** and relative beam-compensated sphere target strength $(TS_{rel}, dB \text{ re } 1 \text{ m}^2)$ are plotted in **Figure III.3**. A time-series of calibration results for *Shimada*, including on-axis gain (G_0) , S_a Correction $(S_a \text{ corr})$, beamwidths $(\alpha_{-3dB} \text{ and } \beta_{-3dB})$, offset angles $(\alpha_0 \text{ and } \beta_0)$, and RMS, are plotted in **Figure III.4**.

Figure III.1. Map of the calibration location (yellow diamond) near Shelter Island, San Diego Bay. The red box in the inset indicates the location and extent of the main map.

Table III.1 Simrad EK60 general purpose transceiver (GPT) information, pre-calibration settings, and beam model results following calibration (below horizontal line). Prior to the survey, on-axis gain (G_0), beam angles and angle offsets, and S_a Correction (S_a corr) values from calibration results were entered into the GPT-control software (Simrad ER60).

Frequency $(f, \text{ kHz})$	Units	18	38	70	120	200
Model		ES18-11	ES38B	ES70-7C	ES120-7C	ES200-7C
Serial Number		2065	30715	168	573	339
Transmit Power $(p_{\rm et})$	W	2000	2000	750	250	100
Pulse Duration (τ)	ms	1.024	1.024	1.024	1.024	1.024
On-axis Gain (G_0)	dB re 1	23.16	26.14	26.1	26.02	25.39
$S_{\rm a}$ Correction ($S_{\rm a}$ corr)	dB re 1	-0.74	-0.57	-0.34	-0.35	-0.36
Bandwidth $(W_{\rm f})$	Hz	1570	2430	2860	3030	3090
Sample Interval	m	0.194	0.194	0.194	0.194	0.194
Eq. Two-way Beam Angle ()	dB re 1 sr	-18	-21.4	-21.5	-20.8	-20.8
Absorption Coefficient $(\alpha_{\rm f})$	$dB \ km^{-1}$	1.9	7.5	21.2	44.2	71.4
Angle Sensitivity Along. (Λ_{α})	Elec.°/Geom.°	13.68	21.62	22.64	22.78	22.69
Angle Sensitivity Athw. (Λ_{β})	Elec.°/Geom.°	13.68	21.62	22.64	22.78	22.69
3-dB Beamwidth Along. (α_{-3dB})	deg	11.22	7.04	6.67	6.42	6.55
3-dB Beamwidth Athw. (β_{-3dB})	\deg	11.28	7.1	6.73	6.45	6.49
Angle Offset Along. (α_0)	\deg	-0.21	-0.01	-0.13	0.05	0.03
Angle Offset Athw. (β_0)	\deg	0.22	-0.02	0.04	0.11	-0.08
Theoretical TS (TS_{theory})	$dB re 1 m^2$	-42.46	-42.39	-41.62	-39.73	-38.82
Ambient Noise	dB re 1 W					
On-axis Gain (G_0)	dB re 1	23.05	25.96	26.33	25.8	25.23
$S_{\rm a}$ Correction ($S_{\rm a}$ corr)	dB re 1	-0.78	-0.57	-0.34	-0.37	-0.22
RMS	dB	0.32	0.16	0.15	0.21	0.31
3-dB Beamwidth Along. (α_{-3dB})	\deg	10.96	6.98	6.46	6.57	6.71
3-dB Beamwidth Athw. (β_{-3dB})	\deg	11.1	6.94	6.51	6.63	6.68
Angle Offset Along. (α_0)	\deg	-0.19	0.02	-0.09	0.03	0.02
Angle Offset Athw. (β_0)	deg	0.24	-0.01	0.05	0.1	-0.07

Figure III.2. Beam-uncompensated sphere target strength $(TS_u, dB \text{ re } 1 \text{ m}^2)$ measurements of a 38.1mm diameter sphere made from tungsten carbide (WC) with 6% cobalt binder material, at multiple EK60 frequencies (18, 38, 70, 120, and 200 kHz). Crosses indicate measurements marked as outliers after viewing the beam model results.

Figure III.3. Relative beam-compensated sphere target strength $(TS_{rel}, dB re 1 m^2)$ measurements of a 38.1-mm diameter sphere made from tungsten carbide (WC) with 6% cobalt binder material, at multiple EK60 frequencies (18, 38, 70, 120, and 200 kHz). TS_{rel} is calculated as the difference between the beam-compensated target strength (TS_c) and the theoretical target strength (TS_{theory}) , see Table III.1). Crosses indicate measurements marked as outliers after viewing the beam model results.

Figure III.4. Time series of beam model results of a) on-axis gain (G_0, dB) ; b) S_a correction $(S_a \text{corr}, dB \text{ re 1})$; c) alongship $(\alpha_{-3dB}, \text{ blue})$ and athwartship $(\beta_{-3dB}, \text{ red})$ beamwidths (deg); d) alongship $(\alpha_0, \text{ blue})$ and athwartship $(\beta_0, \text{ red})$ offset angles (deg.); and e) RMS (dB) for each EK60 transducer frequency aboard *Shimada*. Unfilled circles indicate results from the current survey.

III.2. Data collection

III.2.1. Acoustic and trawl sampling

The survey spanned an area from approximately Haida Gwaii, British Columbia to San Diego, CA (**Figure III.5**), with 79 east-west transects totaling 3150 nmi, and 158 Nordic trawls.

Leg I

On 20 June, *Shimada* departed San Diego and began the first transect that day at \sim 1300 (all times UTC). On 3 July, *Shimada* arrived at Pier 15 in San Francisco, CA at \sim 2300 to end Leg I.

Leg II

On 8 July 2015, *Shimada* departed Pier 15 in San Francisco, CA at *ca.* 1700, and arrived at the first station (Station 18.1 on transect 18; 35 nmi. east of Santa Cruz, CA) at ~1800 on 8 July to resume survey operations. The ship's intercooler was leaking and repaired on 7 July, which delayed departure by one day. Foul weather made trawling difficult beginning on 15 July. Multiple CTD casts were made during the night shift on 15 July instead of trawling; due to foul weather, no trawling was conducted on 16 July. The hydraulic pump operating the ship's rudder malfunctioned for approximately one hour, after which the survey resumed using the backup pump. On 20 July, the ME70 ping rate became very slow. The laptop computer controlling the TriggerJigger fell from the rack and pulled the trigger cable from the EK60, which removed the trigger from the EK60 and caused the whole system to slow. On 22 July, transect 36 was briefly interrupted when the cooling line for the propeller shaft failed and required repair. At one point, the bridge ER60 was run in passive slave mode while trawling for hake, which caused the EAL to crash; disabling the EAL while operating the bridge ER60 in passive slave mode stopped the EAL from crashing. On 26 July, *Shimada* returned to the NOAA Pier, MOC-P in Newport, OR at ~1600 to end Leg II.

Leg III

On 5 August, *Shimada* departed from NOAA Pier, MOC-P in Newport OR, at ~1730, and arrived at the first station (transect 40 near Heceta Head) at ~2100 on 5 August to resume survey operations. On 5 August, upon sampling transect 40, communications to all EK60 GPTs except 200-kHz were lost and could not be reestablished via the ER60 software. All GPTs were disconnected from the Z-Mux junction box and communications were reestablished; no GPTs were connected to the Z-Mux for the remainder of Leg III. On 13 August, acoustic sampling was interrupted for ~45 min when *Shimada*'s main power transformer failed. On 15 August, the trawl gate began leaking hydraulic fluid and was secured by the ship's crew. With the trawl gate inoperable, it was difficult for the crew to manage the nets and damage occurred to both the hake and CPS trawl nets. Further, a joint SWFSC/NWFSC study was performed to inspect potential noise generated on the EK60s from *Shimada*'s propeller speed, connections to the Z-Mux, or both. On 19 August, a second calibration of the EK60 echosounders was conducted by the NWFSC in Shilshole Bay near Seattle, WA (37.7867 °N, -122.3843 °W; results not shown). On 20 August, *Shimada* returned to Pier 90 in Seattle, WA at ~2300to end Leg III.

During Leg III, aerial surveys of CPS were conducted by Frank Foode in coordination with *Shimada*. Analysis of those data are ongoing. On 18 August, acoustic data were collected using 70- and 200-kHz EK80 echosounders outside the straight of Juan de Fuca near Seattle, WA for comparison with EK60 data collected along transect 55.

Leg IV

On 23 August, *Shimada* departed from Pier 90 in Seattle, WA at ~1800 and arrived at the eastern end of transect 57 at ~1330 on 24 August to resume survey operations. On 25 August, transect 57 was extended westward due to presence of hake. On 26 August, transect 59 was also extended westward due to presence of hake. On 26 August, sardine eggs were collected in CUFES at ~2100 but there was no putative CPS backscatter in the EK60 echograms. On 27 August, acoustic sampling was interrupted between ~18:45 and 19:00 to troubleshoot the starboard power-steering pump. On 10 September, *Shimada* returned to MOC-P in Newport, OR at ~2030 to conclude survey operations.

Figure III.5. Cruise track of *Shimada* (gray line), east-west acoustic transects (black lines), and locations of surface trawls (white points) superimposed on the vessel track (light gray lines). Transects north of Vancouver Island were planned *ad hoc* for investigating the northern extent of the hake distribution.

III.2.2 Ichthyoplankton and oceanographic sampling

A total of 126 CTD casts, 59 bongo tows, and 27 PairoVET tows were conducted throughout the survey. In addition, 166 UCTD casts were conducted and 941 CUFES samples were collected underway. The locations of CTD and UCTD stations are shown in Figure **III.6** and **Appendix C**.

Figure III.6. Locations of CTD and UCTD casts (red circles) and plankton net samples (bongo net in orange triangles; PairoVET net in green triangles) relative to the vessel track (bold gray line), acoustic transects (black lines), and proposed transects (light gray lines).

III.3. Distribution of CPS

Acoustic backscatter ascribed to CPS was observed throughout the survey area, but was most prevalent between the Columbia River and Cape Blanco, inshore between Bodega Bay and Morro Bay, CA, and inshore of the northern Channel Islands in the Southern California Bight (**Figure III.7a**).

Jack mackerel eggs were the most abundant of any CPS species and were present in the CUFES throughout most of the survey area. Jack mackerel eggs were most abundant in the offshore portion of transects between the Columbia River and Bodega Bay and south of Monterey Bay (**Figure III.7b**). Sardine eggs were observed in the CUFES south of the Columbia River off Oregon; between Cape Blanco and Crescent City, CA; and between Point Arena (north of Bodega Bay) and Monterey Bay (**Figure III.7b**). Anchovy eggs were present in the CUFES samples off the Columbia River, nearshore between Point Conception and Long Beach, CA, and to a lesser extent in the Gulf of the Farallones near San Francisco (**Figure III.7b**).

Jack mackerel comprised the greatest proportion of catch in trawl samples between Cape Flattery and Cape Mendocino, and along the central CA coast between San Francisco and Big Sur (south of Monterey Bay) (**Figure III.7c**). Pacific herring comprised the greatest proportion of catch in trawl samples in trawl samples in Canadian waters, and to a lesser extent in nearshore trawls between the Cape Flattery and the Columbia River (**Figure III.7c**). Anchovy were predominantly found in trawls conducted between Fort Bragg and Monterey, between Morro Bay and Point Conception, and near San Diego (**Figure III.7c**). The only trawl samples that contained sardine were collected near Newport, OR, Monterey, and San Diego. Overall, the 158 trawls captured a combined 3512 kg of CPS (442 kg sardine, 88 kg anchovy, 1957 kg jack mackerel, 63 kg Pacific mackerel, and 961 kg Pacific herring; **Appendix D**).

IV. Disposition of Data

Archived on the SWFSC data server are approximately 328 GB of raw EK60 data and 0.479 TB of raw ME70 data. For more information, contact: David Demer (Southwest Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, California, 92037, U.S.A.; phone: 858-546-5603; email: david.demer@noaa.gov).

V. Acknowledgements

We thank the crew members of FSV *Shimada*, as well as the scientists and technicians that participated in the sampling operations at sea. CPS-catch data were compiled by Bev Macewicz and CPS-egg data were compiled by Ed Weber. Critical reviews by **Reviewer A** and Gerard Dinardo improved this report.

Figure III.7. Survey transects performed aboard *Shimada* overlaid with (a) the distribution of 38-kHz integrated backscattering coefficients (s_A , m² nmi⁻²; averaged over 2000-m distance intervals and from 5- to 70-m deep) ascribed to CPS; (b) anchovy-, jack mackerel-, and sardine-egg densities (eggs m⁻³) from the CUFES; and (c) proportions of CPS species in trawl clusters (black points indicate trawls with no CPS).

VI. Appendices

Appendix A. Centerboard positions

Transducer depths, associate with the centerboard position (retracted \sim 5-m, intermediate \sim 7-m, extended \sim 9-m) during the SaKe 2015 aboard *Shimada*.

Date	Position	Latitude	Longitude
06/20/2015 00:31	Intermediate (7 m)	32.63133	-117.2837
06/26/2015 22:06	Intermediate (7 m)	34.95050	-121.6900
07/08/2015 18:10	Intermediate (7 m)	37.75250	-122.6672
07/13/2015 16:13	Intermediate (7 m)	39.15967	-123.9762
07/16/2015 00:13	Extended (9 m)	40.45233	-125.2527
07/20/2015 02:56	Intermediate (7 m)	41.78183	-124.6800
08/05/2015 15:25	Retracted (5 m)	44.62633	-124.0483
08/05/2015 18:07	Intermediate (7 m)	44.59200	-124.1232
08/19/2015 12:34	Retracted (5 m)	47.62300	-122.3967
08/23/2015 15:15	Retracted (5 m)	47.62883	-122.3808
08/23/2015 19:33	Intermediate (7 m)	47.84433	-122.4570
08/28/2015 14:16	Extended (9 m)	49.78533	-127.8182
$08/30/2015 \ 20:42$	Extended (9 m)	51.45283	-130.4925
08/31/2015 22:01	Intermediate (7 m)	51.43833	-128.2955

Appendix B. Impedance measurements

Transducer impedance magnitude (|Z|), phase (θ), conductance (G), susceptance (B), resistance (R), and reactance (X) measured at the operational frequencies with the transducer quadrants placed in parallel.

		Frequency (kHz)				
Measurement	Units	18	38	70	120	200
Z		17.66	18.19	23.92	20.65	24.72
θ	deg	-10.75	6.88	-1.03	14.21	-4.31
G	\mathbf{mS}	55.64	54.59	41.75	46.94	40.35
В	\mathbf{mS}	10.56	-6.59	0.71	-11.88	3.04
R		17.35	18.06	23.89	20.02	24.65
X		-3.29	2.18	-0.51	5.07	-1.86

Appendix C. CTD and UCTD sample summary

Times and locations of conductivity and temperature versus depth measurements while on station (CTD) and underway (UCTD).

Date	Type	Latitude	Longitude
06/20/2015 03:19	CTD Cast	32.80517	-117.6333
06/21/2015 03:28	CTD Cast	33.24000	-117.5455
06/22/2015 03:28	CTD Cast	33.57367	-118.4302
06/22/2015 17:24	CTD Cast	33.86767	-118.6233
06/22/2015 18:09	CTD Cast	33.86033	-118.6337
06/22/2015 18:37	CTD Cast	33.86400	-118.6288
06/22/2015 19:17	CTD Cast	33.85483	-118.6488
06/23/2015 00:23	CTD Cast	33.76717	-118.8245
06/24/2015 03:21	CTD Cast	34.18700	-120.3518
06/25/2015 03:06	CTD Cast	34.61700	-120.7085
06/25/2015 13:49	CTD Cast	34.61717	-120.8127
06/25/2015 14:47	CTD Cast	34.61833	-120.8340
06/25/2015 16:16	CTD Cast	34.61833	-120.9513
06/25/2015 19:29	CTD Cast	34.62200	-121.4190
06/25/2015 21:24	CTD Cast	34.61867	-121.6188
06/26/2015 03:37	CTD Cast	34.95467	-120.9392
06/27/2015 03:38	CTD Cast	35.28533	-121.1072
06/28/2015 03:44	CTD Cast	35.95000	-121.8707
06/28/2015 04:57	CTD Cast	35.94933	-121.8913
06/28/2015 13:40	CTD Cast	35.94783	-121.7978
06/28/2015 15:19	CTD Cast	35.95567	-121.5945
06/28/2015 16:29	CTD Cast	35.94750	-121.5330
06/28/2015 17:05	CTD Cast	35.95200	-121.5238
06/29/2015 03:46	CTD Cast	36.25067	-122.3573
06/30/2015 03:48	CTD Cast	36.70183	-122.5233
07/01/2015 03:56	CTD Cast	36.95167	-122.3500
07/01/2015 14:04	CTD Cast	36.95167	-122.3740
07/01/2015 15:57	CTD Cast	36.95083	-122.5783
07/02/2015 03:46	CTD Cast	37.45017	-122.8038
07/02/2015 23:54	CTD Cast	38.11817	-123.0097
07/03/2015 01:49	CTD Cast	38.11817	-123.3238
07/03/2015 03:19	CTD Cast	38.11950	-123.4808
07/03/2015 13:35	CTD Cast	38.11800	-123.5135
07/03/2015 15:01	CTD Cast	38.11850	-123.5723
07/03/2015 15:58	CTD Cast	38.11883	-123.6050
07/09/2015 03:47	CTD Cast	36.95300	-122.3645
07/09/2015 19:33	UCTD Cast	37.20133	-122.6448
07/09/2015 21:50	UCTD Cast	37.20133	-122.8450
07/09/2015 22:20	UCTD Cast	37.20100	-122.9493
07/09/2015 23:22	UCTD Cast	37.20117	-123.1605
07/10/2015 02:25	UCTD Cast	37.44983	-123.0170
07/10/2015 04:04	CTD Cast	37.44817	-122.8350
07/10/2015 13:27	UCTD Cast	37.45083	-122.7032
07/10/2015 14:25	UCTD Cast	37.45067	-122.5133
		51120001	

1	(continued)
(communueu)

Date	Type	Latitude	Longitude
07/10/2015 22:09	UCTD Cast	37.78433	-123.2892
$07/11/2015 \ 01:14$	UCTD Cast	37.78483	-123.0735
07/11/2015 02:13	UCTD Cast	37.78400	-122.8648
07/11/2015 $05:48$	CTD Cast	37.77767	-123.2010
07/11/2015 13:08	UCTD Cast	38.11767	-122.9853
07/11/2015 14:05	UCTD Cast	38.11750	-123.1983
07/11/2015 15:10	UCTD Cast	38.11683	-123.4162
07/11/2015 22:13	UCTD Cast	38.45083	-123.8468
07/11/2015 23:52	UCTD Cast	38.45167	-123.6395
07/12/2015 04:31	CTD Cast	38.45200	-123.4970
07/12/2015 13:15	UCTD Cast	38.45117	-123.3205
07/12/2015 17:43	UCTD Cast	38.78417	-123.6653
07/12/2015 17:43	UCTD Cast	38.78417	-123.6658
07/12/2015 18:43	UCTD Cast	38.78417	-123.8813
07/12/2015 19:45	UCTD Cast	38.78417	-124.0962
07/13/2015 02:26	UCTD Cast	39.11733	-123.8067
07/13/2015 $02:39$	UCTD Cast	39.11733	-123.8475
07/13/2015 $03:20$	CTD Cast	39.11850	-123.9363
07/13/2015 04:04	CTD Cast	39.11783	-123.9722
07/13/2015 13:47	CTD Cast	39.12017	-124.0185
07/13/2015 18:13	CTD Cast	39.10167	-124.2320
07/13/2015 22:37	UCTD Cast	39.45000	-124.4357
07/13/2015 23:37	UCTD Cast	39.44967	-124.2238
07/14/2015 $05:18$	CTD Cast	39.44950	-124.0125
07/14/2015 13:41	UCTD Cast	39.78333	-124.0092
07/14/2015 14:11	UCTD Cast	39.78383	-124.1170
07/15/2015 $03:31$	CTD Cast	40.11867	-124.4253
07/15/2015 13:15	UCTD Cast	40.11733	-124.3870
07/15/2015 13:47	UCTD Cast	40.11767	-124.2732
07/15/2015 17:56	CTD Cast	40.45017	-124.6088
07/15/2015 18:33	CTD Cast	40.45050	-124.6198
07/15/2015 19:15	CTD Cast	40.45167	-124.6292
07/15/2015 21:37	CTD Cast	40.44967	-124.8515
07/16/2015 04:09	CTD Cast	40.63017	-124.7198
07/16/2015 15:37	UCTD Cast	40.78333	-124.3238
07/16/2015 19:18	UCTD Cast	40.78483	-124.5395
07/17/2015 22:26	CTD Cast	41.11933	-124.5255
07/18/2015 $02:14$	CTD Cast	41.44950	-124.3687
07/18/2015 13:46	CTD Cast	41.45083	-124.2062
07/18/2015 14:25	UCTD Cast	41.45067	-124.3063
07/18/2015 15:33	CTD Cast	41.45567	-124.4617
07/18/2015 16:26	CTD Cast	41.45767	-124.5018
07/18/2015 16:26	CTD Cast	41.45783	-124.5018
07/18/2015 17:27	CTD Cast	41.45583	-124.5163
07/18/2015 19:21	CTD Cast	41.45883	-124.5838
07/18/2015 23:29	UCTD Cast	41.45017	-124.7472

/		7)
1 co'	ntiniie	d
100	100010000	w,

Date	Туре	Latitude	Longitude
$07/19/2015 \ 01:13$	CTD Cast	41.45183	-125.0148
$07/19/2015 \ 03:59$	CTD Cast	41.78533	-125.1330
$07/19/2015 \ 13:44$	UCTD Cast	41.78367	-124.9940
07/19/2015 18:02	UCTD Cast	41.78367	-124.7697
07/19/2015 19:08	UCTD Cast	41.78483	-124.5447
$07/20/2015 \ 03:10$	UCTD Cast	$\begin{array}{c} 41.78067\\ 42.11800\\ 42.11683\\ 42.34700\\ 42.45083 \end{array}$	-124.6832
$07/20/2015 \ 13:20$	UCTD Cast		-124.4347
$07/20/2015 \ 16:40$	UCTD Cast		-124.6603
$07/21/2015 \ 05:03$	UCTD Cast		-124.8092
$07/21/2015 \ 14:08$	UCTD Cast		-124.6067
07/21/2015 14:57	CTD Cast	$\begin{array}{r} 42.45483\\ 42.45267\\ 42.45350\\ 42.45283\\ 42.45183\end{array}$	-124.7417
07/21/2015 15:29	CTD Cast		-124.7825
07/21/2015 16:09	CTD Cast		-124.8328
07/22/2015 00:18	CTD Cast		-125.0575
07/22/2015 03:12	CTD Cast		-125.5720
07/22/2015 20:52	UCTD Cast	42.78400	-125.3458
07/22/2015 21:55	UCTD Cast	42.78383	-125.1230
07/22/2015 23:38	UCTD Cast	42.78450	-124.8932
07/22/2015 23:38	UCTD Cast	42.78450	-124.8927
07/22/2015 00:08	UCTD Cast	42.78400	-124.7837
07/23/2015 03:32	UCTD Cast	$\begin{array}{c} 43.11750\\ 43.11467\\ 43.11750\\ 43.11750\\ 43.11733\end{array}$	-124.5527
07/23/2015 04:30	CTD Cast		-124.7192
07/23/2015 13:45	UCTD Cast		-124.7818
07/23/2015 16:21	UCTD Cast		-124.9007
07/23/2015 17:25	UCTD Cast		-125.1282
$\begin{array}{c} 07/24/2015 \ 01:50\\ 07/24/2015 \ 02:52\\ 07/24/2015 \ 03:22\\ 07/24/2015 \ 04:04\\ 07/24/2015 \ 21:34 \end{array}$	UCTD Cast UCTD Cast UCTD Cast CTD Cast UCTD Cast	$\begin{array}{c} 43.44950\\ 43.45233\\ 43.45067\\ 43.45350\\ 43.45050\end{array}$	-124.9518 -124.7295 -124.6148 -124.5098 -124.3803
$\begin{array}{c} 07/25/2015 \ 00:27\\ 07/25/2015 \ 01:30\\ 07/25/2015 \ 02:22\\ 07/25/2015 \ 03:32\\ 07/25/2015 \ 18:54 \end{array}$	UCTD Cast CTD Cast CTD Cast CTD Cast CTD Cast	$\begin{array}{c} 43.78300\\ 43.78667\\ 43.78500\\ 43.78550\\ 43.78550\end{array}$	-124.3200 -124.5187 -124.6203 -124.7783 -125.0133
08/05/2015 21:45	UCTD Cast	$\begin{array}{c} 44.11783\\ 44.11750\\ 44.11733\\ 44.11700\\ 44.19950\end{array}$	-124.3140
08/05/2015 22:50	UCTD Cast		-124.5627
08/05/2015 23:48	UCTD Cast		-124.7758
08/06/2015 01:49	UCTD Cast		-125.0058
08/06/2015 03:55	CTD Cast		-124.8895
08/06/2015 18:14	UCTD Cast	44.23283	-124.7802
08/06/2015 19:18	UCTD Cast	44.29883	-124.5753
08/06/2015 20:19	UCTD Cast	44.36883	-124.3648
08/06/2015 20:34	UCTD Cast	44.38533	-124.3150
08/06/2015 22:32	UCTD Cast	44.45117	-124.3432
08/06/2015 23:37	UCTD Cast	44.45100	-124.5823

/	1)
1 co	ntinued)
100	10001000000

Date	Type	Latitude	Longitude
08/07/2015 00:37	UCTD Cast	44.45050	-124.8112
08/07/2015 04:10 08/07/2015 13:26	UCTD Cast	44.30033 44.45067	-124.8827
08/07/2015 17:37	CTD Cast	44.79000	-125.0795
08/07/2015 18:47	CTD Cast	44.78617	-125.0170
08/07/2015 19:45	UCTD Cast	44.78400	-124.9767
08/07/2015 20:48	CTD Cast	44.78500	-124.8725
08/08/2015 01:21 08/08/2015 06:58	CTD Cast CTD Cast	44.78033	-124.0008 -125.1080
08/08/2015 14:02	CTD Cast	44.78617	-124.4468
08/08/2015 15:59	CTD Cast	44.78283	-124.1542
08/08/2015 18:59	UCTD Cast	45.11767	-124.0725
08/08/2015 20:03	UCTD Cast	45.11767	-124.3182
08/09/2015 01:19	UCID Cast	45.11750	-124.5397
08/09/2015 01:50	UCTD Cast	45.11733 45.11767	-124.6553 -124.7743
08/09/2015 02:25	CTD Cast	45.11707 45.11550	-124.7743 -125.0868
08/09/2015 14:16	UCTD Cast	45.36750	-124.8217
08/09/2015 18:40	UCTD Cast	45.36667	-124.3913
08/09/2015 22:42	UCTD Cast	45.61833	-124.1700
08/10/2015 01:52	UCTD Cast	45.61733	-124.4035
08/10/2015 02:24 08/10/2015 02:57	UCTD Cast	45.61767 45.61783	-124.5257 124.6488
$08/10/2015 \ 02.57$ $08/10/2015 \ 03:57$	CTD Cast	45.61783 45.61833	-124.0488 -124.7665
08/10/2015 15:07	UCTD Cast	45.67400	-124.7490
$08^{\prime}/10^{\prime}/2015$ 18:03	UCTD Cast	45.69983	-124.6375
08/10/2015 18:34	UCTD Cast	45.73117	-124.5278
08/10/2015 19:02	UCTD Cast	45.75667	-124.4280
08/10/2015 20:04	UCID Cast	45.81507	-124.2027
08/10/2015 20:18 08/10/2015 21:43	UCTD Cast UCTD Cast	45.82683 45.86750	-124.1507 -124.1742
08/10/2015 21:45 08/10/2015 22:56	CTD Cast	45.87617	-124.4038
$08/10/2015 \ 23:47$	UCTD Cast	45.86800	-124.5322
08/11/2015 00:42	UCTD Cast	45.86800	-124.6558
08/11/2015 01:16	CTD Cast	45.86767	-124.7245
08/11/2015 13:41	CTD Cast	45.86950	-124.7728
08/11/2015 16:01 08/11/2015 18:50	UID Cast	45.86717 46.11682	-125.0143 -124 0748
08/11/2015 10.59 08/11/2015 20:01	UCTD Cast	46.11767	-124.7330
08/12/2015 00:34	UCTD Cast	46.11750	-124.6175
$08/12/2015 \ 01:37$	UCTD Cast	46.11750	-124.3712
08/12/2015 02:37	UCTD Cast	46.11667	-124.1335
08/12/2015 04:09	CTD Cast	46.07217	-124.2565
00/12/2010 14:13		40.00700	-124.0017
08/12/2015 18:41 08/12/2015 22.15	UCID Cast	40.30733 46 61650	-124.8028 -124.9413
08/12/2015 23:27	UCTD Cast	46.61683	-124.6483

(continued)

Data	Trues	Latituda	Longitudo
Date	Туре	Latitude	Longitude
08/13/2015 05:09	CTD Cast	46.68533	-124.4877
08/13/2015 13:28	UCTD Cast	46.86750	-124.3245
08/13/2015 14:30	UCTD Cast	46.86650	-124.5698
08/13/2015 15:27	CTD Cast	46.86517	-124.7623
08/13/2015 18:49	UCTD Cast	46.86817	-124.9345
08/13/2015 20:57	CTD Cast	46.87083	-125.1698
08/13/2015 21:50	UCTD Cast	46.87733	-125.2277
08/13/2015 22:52	UCTD Cast	46 93683	-124 9927
08/14/2015 01:54	UCTD Cast	46.96600	-124.8838
08/14/2015 02:55	UCTD Cast	47.02317	-124.6552
08/14/2015 04:37	CTD Cast	47.03983	-124.7140
08/14/2015 14:06	UCTD Cast	47.11750	-124.9925
09/14/2015 15:07	UCTD Cost	47 11200	194 7409
08/14/2010 10:07	UCTD Cast	47 11717	-124.1492 -194 6097
08/14/2015 15.21 08/14/2015 18.22	UCTD Cast	47 11800	-124.0927 -124.5035
08/14/2015 22.19	UCTD Cast	47.36717	-124.7923
08/15/2015 01:13	UCTD Cast	47.36750	-125.0380
00/15/2015 00.10		47 00715	105 0010
08/15/2015 02:12	UCTD Cast	47.36717	-125.2812
08/15/2015 03:58 08/15/2015 14:10	UCTD Cast	47.34200	-125.0118
08/15/2015 14:19 08/15/2015 15:20	UCID Cast	47.01733	-125.8703
08/15/2015 15:20 08/15/2015 16:42	CTD Cast	47.01755	-120.0200 105.2800
08/15/2015 10.42	OID Cast	47.02105	-120.0022
08/15/2015 18:21	CTD Cast	47.62117	-125.1302
08/15/2015 19:04	CTD Cast	47.61833	-125.0913
08/16/2015 01:26	CTD Cast	47.61850	-124.9637
08/16/2015 02:29	OCTD Cast	47.61800	-124.7548
08/16/2015 05:25	CID Cast	47.54650	-124.9617
08/16/2015 14:55	CTD Cast	47.86583	-124.9138
08/16/2015 18:21	UCTD Cast	47.86767	-125.2253
08/17/2015 01:16	UCTD Cast	47.86750	-125.4715
08/17/2015 02:55	CTD Cast	47.86500	-125.8177
08/17/2015 13:57	UCTD Cast	48.11733	-126.0315
08/17/2015 14:58	UCTD Cast	48.11600	-125.7823
08/17/2015 17:54	UCTD Cast	48.11733	-125.6562
08/17/2015 19:16	UCTD Cast	48.11800	-125.4083
08/17/2015 20:16	UCTD Cast	48.11817	-125.1573
08/17/2015 21:17	UCTD Cast	48.11717	-124.9097
08/18/2015 04:04	CTD Cast	48.05033	-124.8952
08/24/2015 05:44	CTD Cast	48.41833	-124.8175
08/24/2015 14:18	UCTD Cast	48.45067	-124.9480
08/24/2015 15:13	UCTD Cast	48.45117	-125.1822
08/24/2015 18:18	UCTD Cast	48.45083	-125.4363
08/24/2015 19:19	UCTD Cast	48.45100	-125.6908
08/24/2015 20:19	UCTD Cast	48.45083	-125.9427
08/24/2015 20:49	UCTD Cast	48.45100	-126.0692
08/24/2015 23:45	UCTD Cast	48.45117	-126.2058
08/25/2015 02:03	UCTD Cast	48.48733	-126.4357

(continued)

Date	Type	Latitude	Longitude
$08/25/2015 \ 03:03$ $08/25/2015 \ 03:47$ $08/25/2015 \ 17:46$ $08/25/2015 \ 18:56$	UCTD Cast CTD Cast UCTD Cast UCTD Cast	$\begin{array}{r} 48.54617\\ 48.56200\\ 48.63250\\ 48.69433\end{array}$	-126.1955 -126.1102 -125.8517 -125.5915
08/25/2015 22:20 08/26/2015 00:18 08/26/2015 02:17	UCTD Cast UCTD Cast UCTD Cast	48.74750 48.78350 48.78383	-125.3800 -125.5692 -126.0705
08/26/2015 03:40 08/26/2015 14:47 08/26/2015 22:27 08/27/2015 01:59	CTD Cast UCTD Cast UCTD Cast	48.78417 48.78400 49.11767 49.11800	-126.3278 -126.5905 -126.9217
$08/27/2015 \ 01.39$ $08/27/2015 \ 04:41$ $08/27/2015 \ 18:28$ $08/27/2015 \ 19:49$ $08/27/2015 \ 21:07$	CTD Cast UCTD Cast UCTD Cast CTD Cast	$\begin{array}{c} 49.11800\\ 49.13250\\ 49.45117\\ 49.45117\\ 49.45200 \end{array}$	-126.4353 -126.6123 -126.8822 -127.1247
08/27/2015 22:49 08/28/2015 02:12 08/28/2015 03:29 08/28/2015 13:53 08/28/2015 14:53	CTD Cast CTD Cast CTD Cast UCTD Cast UCTD Cast	49.45233 49.44983 49.45550 49.78467 49.78417	-127.2515 -127.5148 -127.6865 -127.9147 -127.6590
$\begin{array}{c} 08/28/2015 \ 23:28\\ 08/29/2015 \ 03:51\\ 08/29/2015 \ 15:23\\ 08/29/2015 \ 16:23\\ 08/29/2015 \ 16:25 \end{array}$	UCTD Cast CTD Cast UCTD Cast UCTD Cast UCTD Cast	$\begin{array}{c} 50.11800\\ 50.12150\\ 50.11767\\ 50.11800\\ 50.11817\end{array}$	-128.0463 -128.1455 -128.3058 -128.5657 -128.5728
08/29/2015 18:03 08/29/2015 19:04 08/29/2015 20:07 08/30/2015 00:49 08/30/2015 01:22	UCTD Cast UCTD Cast UCTD Cast UCTD Cast UCTD Cast	$\begin{array}{c} 50.16100\\ 50.25583\\ 50.35167\\ 50.45083\\ 50.45050\end{array}$	-128.7613 -128.5427 -128.3180 -128.4162 -128.5557
$\begin{array}{c} 08/30/2015 \ 02:19\\ 08/30/2015 \ 03:39\\ 08/31/2015 \ 03:41\\ 08/31/2015 \ 17:04\\ 08/31/2015 \ 18:19 \end{array}$	UCTD Cast CTD Cast CTD Cast UCTD Cast UCTD Cast	$\begin{array}{c} 50.45017\\ 50.44617\\ 51.44917\\ 51.45100\\ 51.45300\end{array}$	-128.8023 -129.0135 -128.8407 -128.6360 -128.2950
$\begin{array}{c} 08/31/2015 \ 18:21\\ 09/01/2015 \ 05:31\\ 09/01/2015 \ 19:32\\ 09/01/2015 \ 21:10\\ 09/02/2015 \ 03:42 \end{array}$	UCTD Cast CTD Cast UCTD Cast UCTD Cast CTD Cast	$51.45300 \\ 52.62533 \\ 52.61750 \\ 52.61850 \\ 52.95017$	-128.2863 -129.6703 -130.4367 -130.8220 -130.4167
$\begin{array}{c} 09/02/2015 \ 14:47\\ 09/02/2015 \ 17:52\\ 09/02/2015 \ 22:49\\ 09/03/2015 \ 04:12\\ 09/03/2015 \ 17:14 \end{array}$	UCTD Cast UCTD Cast UCTD Cast CTD Cast UCTD Cast	$\begin{array}{c} 52.95167\\ 52.95150\\ 53.28350\\ 53.61550\\ 54.39950\end{array}$	-130.1940 -129.9282 -130.7207 -130.7632 -131.1478
09/03/2015 20:23	UCTD Cast	54.53933	-131.1473

(continucu)			
Date	Type	Latitude	Longitude
09/03/2015 21:16	UCTD Cast	54.68317	-131.1483
09/04/2015 04:18	CTD Cast	54.28750	-132.8650
09/04/2015 15:04	UCTD Cast	54.28433	-133.1537
09/04/2015 17:45	UCTD Cast	54.28417	-133.3888
09/04/2015 21:22	UCTD Cast	54.28417	-133.6498
09/04/2015 22:04	UCTD Cast	54.28350	-133.8488
09/05/2015 04:17	CTD Cast	53.95267	-133.9878
09/05/2015 15:07	UCTD Cast	53.95083	-133.8012
09/05/2015 19:58	CTD Cast	53.61800	-133.1940
09/05/2015 20:19	CTD Cast	53.61817	-133.1913
09/06/2015 $04:08$	CTD Cast	53.28067	-133.3682
09/06/2015 15:40	CTD Cast	53.28533	-133.0753
09/06/2015 23:14	CTD Cast	52.94717	-132.5023
09/07/2015 $03:36$	CTD Cast	52.95217	-132.9615
09/07/2015 18:13	CTD Cast	52.28550	-131.5523
09/08/2015 00:03	CTD Cast	51.94500	-131.2625

(continued)

Appendix D. Trawl sample summary

Date, time, and location at the start of trawling (i.e., at net equilibrium), and biomasses (kg) of CPS species collected in each trawl. The duration of each trawl set was nominally 45 min.

Haul	Date	Latitude	Longitude	Anchovy	Sardine	P. mackerel	J. mackerel	P. herring	All CPS
1	06/19/2015 21:56	32.847	-117.553	0.157			0.058		0.214
2	06/20/2015 00:35	32.893	-117.465	0.010					0.010
3	06/20/2015 $02:49$	32.945	-117.392						
4	06/20/2015 21:25	33.249	-117.531	0.036	0.008				0.044
5	06/20/2015 23:24	33.272	-117.558	2.906			0.007		2.913
6	06/21/2015 $01:32$	33.240	-117.569	9.057					9.057
7	06/21/2015 21:10	33.580	-118.407				0.048		0.048
8	06/21/2015 23:31	33.546	-118.408						
9	06/22/2015 $01:34$	33.544	-118.445	0.006					0.006
10	06/22/2015 20:48	33.600	-119.303				0.071		0.071
11	06/22/2015 22:56	33.650	-119.444						
12	06/23/2015 01:21	33.710	-119.522						
13	06/23/2015 21:13	34.215	-120.274	2.366					2.366
14	06/23/2015 23:40	34.211	-120.237	0.459	0.003				0.462
15	06/24/2015 $02:04$	34.197	-120.251	20.552	0.004				20.555
16	06/24/2015 20:27	34.644	-120.746	0.000					0.000
17	06/24/2015 22:43	34.649	-120.861						
18	06/25/2015 01:20	34.732	-120.760	0.122					0.122
19	06/25/2015 21:13	34.961	-120.996	30.669	1.280				31.950
20	06/25/2015 23:29	35.022	-121.040	0.065					0.065
21	06/26/2015 $01:54$	34.926	-121.034		0.021				0.021
22	06/26/2015 21:10	35.280	-121.142	0.122	0.014				0.136
23	06/26/2015 23:25	35.362	-121.058	0.001					0.001
24	06/27/2015 $01:42$	35.273	-121.052						
25	06/27/2015 21:18	35.954	-121.904				133.400		133.400
26	06/27/2015 23:38	35.999	-122.009				0.006		0.006
27	06/28/2015 $01:54$	35.894	-121.951	0.014	0.008		0.002		0.026
28	06/28/2015 21:26	36.245	-122.377	0.002			1.443		1.446
29	06/28/2015 23:55	36.382	-122.316	0.109			0.122		0.231
30	06/29/2015 02:13	36.275	-122.236	0.001	0.002		0.020		0.024

Haul	Date	Latitude	Longitude	Anchovy	Sardine	P. mackerel	J. mackerel	P. herring	All CPS	
31	06/29/2015 21:07	36.710	-122.509							
32	06/29/2015 23:33	36.763	-122.388	0.004			0.198		0.202	
33	06/30/2015 $01:57$	36.639	-122.389							
34	06/30/2015 21:35	36.953	-122.326							
35	06/30/2015 23:58	37.022	-122.312	0.000			0.122		0.122	
36	07/01/2015 02:21	36.906	-122.295	0.004					0.004	
37	07/01/2015 21:02	37.443	-122.823							
38	07/01/2015 23:23	37.535	-122.784							
39	07/02/2015 $02:03$	37.395	-122.774							
40	07/02/2015 21:09	38.124	-123.445							
41	07/02/2015 23:28	38.218	-123.522							
42	07/08/2015 21:52	36.959	-122.389	3.043	0.030		0.020		3.093	
43	07/09/2015 00:23	37.032	-122.413	17.800	0.377		1.162		19.340	
44	07/09/2015 $03:00$	36.922	-122.428							
45	07/09/2015 21:44	37.450	-122.879							
46	07/10/2015 00:14	37.373	-122.945	0.016	0.005		0.014		0.034	
47	07/10/2015 $02:40$	37.479	-122.969							
48	07/10/2015 23:23	37.817	-123.248							
49	07/11/2015 $01:37$	37.934	-123.230	0.020	0.001				0.022	
50	07/11/2015 22:11	38.526	-123.595	0.057	0.002				0.059	
51	07/12/2015 00:19	38.564	-123.748							
52	07/12/2015 02:18	38.506	-123.660	0.051					0.051	
53	07/12/2015 23:40	38.796	-123.784	0.004					0.004	
54	07/13/2015 $01:53$	38.903	-123.896	0.003					0.003	
55	07/13/2015 23:06	39.447	-124.113							
56	07/14/2015 01:22	39.553	-124.035	0.001		1.153	0.035		1.189	
57	07/15/2015 22:02	40.555	-124.663				49.700		49.700	
58	07/16/2015 00:20	40.652	-124.678							
59	07/16/2015 02:36	40.630	-124.669				2.783		2.783	
60	07/17/2015 20:52	41.564	-124.380	0.000					0.000	
61	07/17/2015 23:32	41.466	-124.490				46.959		46.959	
62	07/18/2015 02:21	41.372	-124.346				16.380		16.380	
69	07/18/2015 22.00	41 769	195 042							

/	1
1000	ntanalod
i (D)	111111120
1001	0001000000

(contin	ued)								
Haul	Date	Latitude	Longitude	Anchovy	Sardine	P. mackerel	J. mackerel	P. herring	All CPS
64 65	07/19/2015 00:03 07/19/2015 03:21	$\begin{array}{c} 41.816 \\ 41.711 \end{array}$	-125.161 -125.117						
66 67 68 69	07/19/2015 21:00 07/19/2015 23:08 07/20/2015 01:50 07/20/2015 22:31	$\begin{array}{c} 41.776 \\ 41.812 \\ 41.946 \\ 42.347 \end{array}$	-124.704 -124.545 -124.497 -124.832	0.001	1.051	14.014	32.750 746.871		$32.750 \\ 0.001 \\ 761.936$
70 71	07/21/2015 02:25 07/21/2015 23:43	42.339 42.471	-124.829 -124.856				119.219 30.673		$\frac{119.219}{30.673}$
72 73 74 75	07/22/2015 02:23 07/22/2015 22:12 07/23/2015 00:48 07/23/2015 03:12	$\begin{array}{c} 42.428 \\ 43.135 \\ 43.218 \\ 43.116 \end{array}$	-124.927 -124.766 -124.690 -124.609	0.002	$1.470 \\ 2.031$		$\begin{array}{c} 1.562 \\ 18.050 \\ 95.908 \end{array}$		$\begin{array}{c} 1.562 \\ 19.519 \\ 97.941 \end{array}$
76 77 78 79	07/23/2015 21:40 07/24/2015 00:03 07/24/2015 02:27 07/24/2015 21:27	43.459 43.503 43.451 43.805	-124.554 -124.558 -124.529 -124.842	$0.002 \\ 0.004 \\ 0.002$	0.457	15 450	4.826 8.400 9.714	1.400 0.100	5.285 9.805 0.102 9.714
80 81	07/25/2015 00:37 07/25/2015 03:07	43.848 43.786	-124.524 -124.496		2.410	15.452	6.367 10.600	157.550 0.098	181.779 10.698
82 83 85	07/25/2015 23:04 07/26/2015 00:21 08/06/2015 00:57	44.259 44.352 44.097	-124.787 -124.801 -124.703	0.002	4.782	6.449	62.180	6.300	$73.411 \\ 0.002 \\ 6.300 \\ 400.720$
86 87 88	08/06/2015 03:16 08/06/2015 22:28 08/07/2015 01:03	44.110 44.439 44.423	-124.856 -124.719 124.885	0.136	428.091	0.102	9.887 158.486	26.700 2.500	488.726 161.224
89 90 91	08/07/2015 01:03 08/07/2015 03:02 08/07/2015 21:40 08/08/2015 03:27	$ \begin{array}{r} 44.423\\ 44.547\\ 44.725\\ 44.786 \end{array} $	-124.885 -124.897 -125.078 -124.446				$3.400 \\ 14.300 \\ 1.500$	0.150	$3.400 \\ 14.300 \\ 1.650$
92 93 94	08/08/2015 21:46 08/09/2015 00:16 08/09/2015 03:09	$\begin{array}{c} 45.127 \\ 45.257 \\ 45.368 \end{array}$	-125.135 -125.069 -124.823				$67.600 \\ 25.850$		$67.600 \\ 25.850$
95 96	08/09/2015 23:07 08/10/2015 01:47	$\begin{array}{c} 45.625 \\ 45.698 \end{array}$	-124.307 -124.443	0.032		1.730	43.579	0.187	45.528
97	08/10/2015 21:43	45.933	-124.764				64.850		64.850

/	1
1000	tamarad
1 1 1 1 1 1	TTTTPH
1001	

Haul	Date	Latitude	Longitude	Anchovy	Sardine	P. mackerel	J. mackerel	P. herring	
98	08/11/2015 00:48	45.878	-124.533				52.050	7.850	
99	08/11/2015 03:08	45.976	-124.581				3.450	0.430	
100	08/11/2015 21:23	46.105	-124.290					1.900	
101	08/11/2015 23:27	46.246	-124.474		0.066		13.029	1.750	
102	08/12/2015 01:51	46.334	-124.307	0.026				19.500	
103	08/12/2015 22:34	46.741	-124.541	0.140				14.900	
104	08/13/2015 01:17	46.833	-124.435	0.026				8.400	
105	08/13/2015 22:02	47.088	-124.754				3.462	0.100	
106	08/14/2015 00:29	47.127	-125.013				0.882		
107	08/14/2015 03:11	47.084	-125.173				2.293		
108	08/14/2015 21:31	47.366	-125.664						
109	08/14/2015 23:44	47.528	-125.754						
111	08/15/2015 22:59	47.574	-125.007				0.004		
112	08/16/2015 01:09	47.742	-124.965	0.201				0.200	
113	08/16/2015 03:16	47.857	-124.830					0.450	
114	08/16/2015 20:50	47.957	-125.888				0.198		
115	08/16/2015 23:11	48.139	-126.033						
116	08/17/2015 01:39	48.093	-126.177				48.550		
117	08/17/2015 21:17	48.082	-124.928					1.750	
118	08/17/2015 23:09	48.145	-124.936					15.550	
119	08/18/2015 01:48	48.042	-125.269						
120	08/24/2015 00:02	48.379	-124.862	0.036					
121	08/24/2015 02:38	48.296	-124.926	0.212				0.044	
122	08/24/2015 21:30	48.570	-126.175				16.100	13.200	
123	08/25/2015 00:05	48.519	-126.148	0.001					
124	08/25/2015 02:33	48.485	-126.327	0.000					
125	08/25/2015 21:25	48.836	-126.384						
126	08/25/2015 23:44	48.752	-126.274						
127	08/26/2015 $03:02$	48.845	-126.133	0.001				0.065	
128	08/26/2015 22:02	49.182	-126.501					31.850	
129	08/27/2015 00:18	49.069	-126.602				0.100	561.350	
130	08/27/2015 02:50	49.047	-126.404					6.400	
131	08/27/2015 21.43	49 581	-127545				25.010		

/	7
Loomtanaioo	
1001000100000	, ,

Haul	Date	Latitude	Longitude	Anchovy	Sardine	P. mackerel	J. mackerel	P. herring	All CPS
132	08/28/2015 00:49	49.663	-127.730						
133	08/28/2015 03:13	49.759	-127.852						
134	08/28/2015 21:11	50.079	-128.156				1.700		1.700
135	08/28/2015 23:30	50.102	-128.023						
136	08/29/2015 01:58	50.164	-128.148						
137	$08/29/2015\ 21{:}07$	50.393	-129.026						
138	08/30/2015 00:14	50.362	-128.797						
139	08/30/2015 $03:15$	50.516	-128.923						
140	08/30/2015 21:09	51.409	-128.966					0.600	0.600
141	08/30/2015 23:26	51.403	-128.837						
142	$08/31/2015 \ 01:43$	51.371	-128.691					0.350	0.350
143	08/31/2015 22:56	52.593	-129.768					2.200	2.200
144	$09/01/2015 \ 01:16$	52.680	-129.716					8.750	8.750
145	09/01/2015 $03:22$	52.583	-129.618					18.550	18.550
146	09/01/2015 21:08	53.015	-130.335					0.250	0.250
147	09/01/2015 23:12	52.944	-130.261					0.092	0.092
148	09/02/2015 01:23	52.867	-130.301						
149	09/03/2015 22:23	54.241	-132.730					48.550	48.550
150	09/04/2015 $01:14$	54.400	-132.698					1.350	1.350
151	09/04/2015 $03:26$	54.310	-132.667						
152	09/04/2015 21:43	53.886	-133.942						
153	09/04/2015 23:58	53.970	-133.839						
154	09/05/2015 $02:36$	54.004	-134.079						
155	09/05/2015 21:41	53.278	-133.473						
156	09/06/2015 $00:40$	53.249	-133.193						
157	09/06/2015 $03:08$	53.378	-133.325						
158	09/06/2015 21:20	52.939	-132.943						
159	09/06/2015 23:31	52.895	-132.795						
160	09/07/2015 01:48	52.824	-132.617						

VII. References

Checkley, D. M., Ortner, P. B., Settle, L. R., and Cummings, S. R. 1997. A continuous, underway fish egg sampler. Fisheries Oceanography, 6: 58–73.

Cutter, G. R., and Demer, D. A. 2008. California current ecosystem survey 2006. Acoustic cruise reports for NOAA FSV *Oscar Dyson* and NOAA FRV *David Starr Jordan*. U.S. Dep. Commer., NOAA Tech. Memo., NOAA-SWFSC-415: 98 pp.

Demer, D. A. 2004. An estimate of error for the CCAMLR 2000 survey estimate of krill biomass. Deep-Sea Research Part II-Topical Studies in Oceanography, 51: 1237–1251.

Demer, D. A., and Hewitt, R. P. 1995. Bias in acoustic biomass estimates of *Euphausia superba* due to diel vertical migration. Deep-Sea Research Part I-Oceanographic Research Papers, 42: 455–475.

Demer, D. A., Kloser, R. J., MacLennan, D. N., and Ona, E. 2009. An introduction to the proceedings and a synthesis of the 2008 ICES Symposium on the Ecosystem Approach with Fisheries Acoustics and Complementary Technologies (SEAFACTS). ICES Journal of Marine Science, 66: 961–965.

Demer, D. A., Zwolinski, J. P., Byers, K. A., Cutter, G. R., Renfree, J. S., Sessions, T. S., and Macewicz, B. J. 2012. Prediction and confirmation of seasonal migration of Pacific sardine (*Sardinops sagax*) in the California Current Ecosystem. Fishery Bulletin, 110: 52–70.

Demer, D., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., and Domokos, R. *et al.* 2015. Calibration of acoustic instruments. ICES Cooperative Research Report No. 312: 147 pp.

Dotson, R., Griffith, D., King, D., and Emmett, R. 2010. Evaluation of a marine mammal excluder device (MMED) for a nordic 264 midwater rope trawl. U.S. Dep. Commer., NOAA Tech. Memo., NOAA-SWFSC-455: 19.

Foote, K. G., Knudsen, H. P., Vestnes, G., MacLennan, D. N., and J., S. E. 1987. Calibration of acoustic instruments for fish density estimation: A practical guide. ICES Cooperative Research Report, 144: 69 pp.

Kim, H. J., Miller, A. J., Neilson, D. J., and McGowan, J. A. 2005. Decadal variations of Mixed Layer Depth and biological response in the southern California current. Sixth Conference on Coastal Atmospheric and Oceanic Prediction and Processes. San Diego.

Mais, K. F. 1974. Pelagic fish surveys in the California Current. State of California, Resources Agency, Dept. of Fish and Game, Sacramento, CA: 79 pp.

Renfree, J. S., and Demer, D. A. 2016. Optimising transmit interval and logging range while avoiding aliased seabed echoes. ICES Journal of Marine Science, 73: 1955–1964.

Simmonds, E. J., and MacLennan, D. N. 2005. Fisheries acoustics: Theory and practice, 2nd edition. Blackwell Publishing, Oxford.

Smith, P. E., Flerx, W., and Hewitt, R. 1985. The CalCOFI Vertical Egg Tow (CalVET) Net. R. Lasker (editor), An egg production method for estimating spawning biomass of pelagic fish: Application to the northern anchovy, (*Engraulis mordax*). U.S. Department of Commerce, NOAA Tech. Rep. NMFS 36: 27–32.

Smith, P., and Richardson, S. 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fisheries Technical Paper No. 175: 108 pp.

Zwolinski, J. P., Demer, D., Macewicz, B. J., Cutter, G., Elliot, B., Mau, S., and Murfin, D. *et al.* 2016. Acoustic-trawl estimates of northern-stock Pacific sardine biomass during 2015. U.S. Dep. Commer., NOAA Tech. Memo., NMFS-SWFSC-559: 15 pp.

Zwolinski, J. P., Emmett, R. L., and Demer, D. A. 2011. Predicting habitat to optimize sampling of Pacific sardine (*Sardinops sagax*). ICES Journal of Marine Science, 68: 867–879.

Zwolinski, J., Demer, D., Cutter Jr., G. R., Stierhoff, K., and Macewicz, B. J. 2014. Building on fisheries acoustics for marine ecosystem surveys. Oceanography, 27: 68–79.